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Abstract A novel gradient smoothing method (GSM) is
proposed in this paper, in which a gradient smoothing toge-
ther with a directional derivative technique is adopted to
develop the first- and second-order derivative approximations
for a node of interest by systematically computing weights
for a set of field nodes surrounding. A simple collocation pro-
cedure is then applied to the governing strong-from of system
equations at each node scattered in the problem domain using
the approximated derivatives. In contrast with the conventio-
nal finite difference and generalized finite difference methods
with topological restrictions, the GSM can be easily applied
to arbitrarily irregular meshes for complex geometry. Seve-
ral numerical examples are presented to demonstrate the
computational accuracy and stability of the GSM for solid
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mechanics problems with regular and irregular nodes. The
GSM is examined in detail by comparison with other establi-
shed numerical approaches such as the finite element method,
producing convincing results.

Keywords Numerical methods · Gradient smoothing
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1 Introduction

The finite difference method (FDM) is one of classical
numerical tools for a broad class of initial-value and
boundary-value problems [1–5]. Rapid development of com-
puter technology since the early 1960s has resulted in ree-
valuation of the conventional numerical methods and search
for new ones. The researchers realized that the traditional
FDM utilizes regular structured and orthogonal meshes either
in global Cartesian space [6] or in local curvilinear space
[7–10]. It is difficult for the analysis by the classical FDM
to automatically discretize boundary conditions, especially in
the case of arbitrarily shaped domains. However, recently the
development of the FDM generalized for arbitrarily unstruc-
tured grids (GFDM) [11–14] clearly indicates its potential
power, which is comparable with the finite element method
(FEM). It is shown that the GFDM may not only become
equally universal, versatile, and suitable to full automation
as the FEM, but also it is even more convenient in some
areas of applications [15]. Moreover, the GFDM falls into
the wider class of so-called meshfree methods [16,17]. They
have been under intensive development in the recent years as
a powerful alternative to the FEM. Comprehensive reviews
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on the development of meshfree methods can be found in
many open literature such as Refs. [18–21].

The GFDM is considered as the category of meshfree
strong-form methods [22], which directly discretizes the
governing equations. The early contributors to the GFDM
include Jensen [23], Perrone and Kao [24] etc. Later other
investigators extended and improved the early formulations,
which include the weighted moving least squares approxi-
mation [25], a unified GFDM/FEM system [26], the gene-
ralized finite strip approach [27], the adaptive GFDM [28]
and multigrid GFDM solution approach [29], of which the
most robust was developed by Liszka and Orkisz [30–32].
However, due to practical reasons, as well as for the purpose
of generation of well-conditioned finite difference schemes,
implementations of such methods using arbitrary irregular
grids may sometimes be required to satisfy certain require-
ments, e.g., regularity in subdomains with guaranteed smooth
transition, mesh with varying element topology and distribu-
tion of nodes with topological restrictions. Also, to consider
finite difference (FD) operator generation at a node, one of
the star selection criteria used in these methods and consi-
dered the best one [33], termed the Voronoi neighborhood
criterion, is relatively more complicated and more difficult
to be implemented for practical use.

In this paper we present a gradient smoothing method
(GSM) based on the strong form formulation as an alternative
to the generalized finite difference method for solving solid
mechanics problems. Gradient smoothing technique is utili-
zed to construct first- and second-order derivative approxi-
mations by systematically computing weights for a set of
nodal points surrounding an interest node. These computa-
tions can be easily performed in parallel and are independent
of the complexity and topology of a mesh. The flexibility
of the GSM makes use of existing meshes that have ori-
ginally been created for finite difference or finite element
methods. A directional derivative technique is adopted to
acquire a favourable weight distribution for the discrete dif-
ferential operators, which helps greatly in solving the resul-
ting set of algebraic system equations more efficiently and
accurately.

This paper is organized as follows. In Sect. 2, a gradient
smoothing technique is briefly introduced. Section 3 gives

theoretical formulation and convergence study of the GSM.
Several numerical examples are presented in Sect. 4, and
conclusions are drawn in Sect. 5.

2 Gradient smoothing

A two-dimensional elastostatic problem is governed by the
following equilibrium equation in the domain �:

σi j, j + bi = 0 in � (1)

where σi j is the stress tensor and bi is the body force. Boun-
dary conditions are given as follows:

ui = ūi on �u (2)

σi j n j − ti = 0 on �t (3)

where ūi denotes the prescribed boundary displacement on
Dirichlet boundary �u; ti is the traction on Neumann boun-
dary �t and ni is the unit outward normal vector.

It is supposed here that the problem domain � can be
discretized by triangular cells (elements) as shown in Fig. 1.
There are M field nodes in the problem domain �. For the i th
node, a smoothing domain �i is generated by sequentially
connecting the centroids with mid-edge points of surroun-
ding triangular cells. �i is the boundary of the smoothing
cell �i . There is no overlapping between any two smoothing
cells. That is,

� =
M∑

i=1

�i ,�1 ∩ �2 ∩ · · · ∩ �M = Ø (4)

For constructing the difference schemes, a smooth opera-
tion to the gradient of field function u is proposed as
follows: [34–36],

∇hu(xi ) =
∫

�i

∇hu(x)�(x − xi )d�i (5)

Fig. 1 Schematic of the
triangular cells and smoothing
cells created by sequentially
connecting the centroids with
mid-edge points of surrounding
triangles for the i th node
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Integration by parts for Eq. (5) leads to

∇hu(xi ) =
∫

�i

uh(x)n(x)�(x − xi )d�

−
∫

�i

uh(x)∇�(x − xi )d� (6)

where � is a smoothing function.
Consider a weighted Shepard function [37] as the smoo-

thing function

�(x − xi ) = φ(x − xi )

M∑
j=1

φ(x − x j )A j

(7)

where Ai = ∫
�i

d� is the area (or volume) of the repre-
sentative domain (smoothing domain) of the i th field node
obtained from the diagram in Fig. 1. The weighted Shepard
function in Eq. (7) meets the following weighted partition of
unity:

M∑

j=1

�(x − x j )A j = 1 (8)

For simplicity a piecewise constant function φ is given by

φ(x − xi ) =
{

1 x ∈ �i

0 x /∈ �i
(9)

Consequently the smoothing function is

�(x − xi ) =
{

1/Ai x ∈ �i

0 x /∈ �i
(10)

Substituting Eq. (10) into Eq. (6), the smoothed gradient of
field function u is obtained:

∇hu(xi ) =
∫

�i

uh(x)n(x)�(x − xi )d�

= 1

Ai

∫

�i

uh(x)n(x)d� (11)

Note that the choice of constant � makes the second term
on the right-hand side of Eq. (6) vanish. The area integration
becomes line integration along the edges of smoothing cell
in Eq. (5). Equqtion (11) can be rewritten in the discrete form
as

∇hui = 1

Ai

mi∑

j=1

(
L(L)

i j n(L)
i j u(L)

i j + L(R)
i j n(R)

i j u(R)
i j

)
(12)

where mi is the number of surrounding cells for the i th field
node. As shown in Fig. 1, L(L)

i j and L(R)
i j are the lengths of

two straight edges along the smoothing boundary located at
the left- and right-hand sides of the edge i − j respectively,
n(L)

i j and n(R)
i j are the corresponding outward normal vectors,

and u(L)
i j and u(R)

i j are the approximated field functions (e.g.,
displacements) along the two straight edges. Similarly, accor-
ding to the procedures described in Eqs. (5)–(11), the second-
order gradient of field function u can be evaluated easily by
differentiating Eq. (11) as

∇2u(xi ) = 1

Ai

∫

�i

∇hu(x)n(x)d� (13)

To get the values of u(L)
i j and u(R)

i j in the Eq. (12), various
schemes can be adopted. The details are to be introduced in
the following section.

3 Gradient smoothing method (GSM)

In this section, the gradient smoothing method is formu-
lated for the approximation of the derivatives that will be
used in the simple collocation procedure to obtain a set of
algebraic system equations. Different rules for constructing
difference schemes are first introduced. A stability analy-
sis is then conducted to reveal the accuracy of the GSM
method. Finally, several numerical studies on computing
accuracy and convergence are carried out using a Poisson’s
equation problem for both regularly and irregularly distribu-
ted meshes.

3.1 Formulation of different rules

3.1.1 Rectangular rule

As described in Sect. 2, the gradient of field function u(x, y)

at field node (xi , yi ) can be approximated by line integrating
along the closed edges of smoothing cell �i . From Eq. (12),
we have

∂ui

∂x
= 1

Ai

mi∑

j=1

1

2
�L Xi j (ui + u( j)) (14)

∂ui

∂y
= 1

Ai

mi∑

j=1

1

2
�LYi j (ui + u( j)) (15)

with

�L Xi j = �L X (L)
i j + �L X (R)

i j = L(L)
i j n(L)

x + L(R)
i j n(R)

x

(16)

�LYi j = �LY (L)
i j + �LY (R)

i j = L(L)
i j n(L)

y + L(R)
i j n(R)

y

(17)

where n(L)
x , n(L)

y , n(R)
x and n(R)

y are the components of the
unit outward normal vectors in x- and y-directions on the
two edges located at the left- and right-hand sides of the edge
i − j , respectively. u( j) denotes the value of field function u
at the j th ( j = 1, 2, . . . , mi ) surrounding node of the i th

123



460 Comput Mech (2008) 41:457–472

field node. Note that the numbering of j is counterclockwise
in this paper.

Similarly, the second-order derivatives can be expressed
as

∂2ui

∂x2 = 1

Ai

mi∑

j=1

1

2
�L Xi j

(
∂ui

∂x
+ ∂u( j)

∂x

)
(18)

∂2ui

∂y2 = 1

Ai

mi∑

j=1

1

2
�LYi j

(
∂ui

∂y
+ ∂u( j)

∂y

)
(19)

∂2ui

∂x∂y
= 1

Ai

mi∑

j=1

1

2
�LYi j

(
∂ui

∂x
+ ∂u( j)

∂x

)
(20)

The formulation in Eqs. (14)–(20) is based on rectangu-
lar rule, where function values along the two straight edges
located at the left- and right-hand sides of the edge i − j are
approximated only according to the mid-edge points of the
surrounding cells for the i th field node. Thus, by arithme-
tically averaging function values at the both edge ends, the
values at mid-edge points can be obtained easily. The cen-
troids of surrounding cells contribute only to the geometrical
calculations of �L Xi j and �LYi j .

3.1.2 Trapezoidal rule

The present trapezoidal rule is different from the above rec-
tangular one, and it evaluates the function values along the
two straight edges located at the left- and right-hand sides
of the edge i − j according to both the mid-edge points and
centroids of surrounding cells. Function values and gradients
at mid-edge points are evaluated by arithmetically averaging
those at the both edge ends. At centroids, they are obtained
with arithmetically averaging values at vertices composing
of the surrounding cells.

From Eq. (12), the following expressions can be obtained

∂ui

∂x
= 1

Ai

mi∑

j=1

[
1

2
�L X (L)

i j

(
um + u(L)

c

)

+1

2
�L X (R)

i j

(
um + u(R)

c

)]
(21)

∂ui

∂y
= 1

Ai

mi∑

j=1

[
1

2
�LY (L)

i j

(
um + u(L)

c

)

+1

2
�LY (R)

i j

(
um + u(R)

c

)]
(22)

where

um = (ui + u( j))/2 (23)

u(L)
c = (ui + u( j) + u( j+1))/3 (24)

u(R)
c =

{
(ui + u( j) + u( j−1))/3 j = 2, 3, . . . , mi

(ui + u(1) + u(mi ))/3 j = 1
(25)

The second-order derivatives by the trapezoidal rule are

∂2ui

∂x2 = 1

Ai

mi∑

j=1

[
1

2
�L X (L)

i j

(
∂um

∂x
+ ∂u(L)

c

∂x

)

+1

2
�L X (R)

i j

(
∂um

∂x
+ ∂u(R)

c

∂x

)]
(26)

∂2ui

∂y2 = 1

Ai

mi∑

j=1

[
1

2
�LY (L)

i j

(
∂um

∂y
+ ∂u(L)

c

∂y

)

+1

2
�LY (R)

i j

(
∂um

∂y
+ ∂u(R)

c

∂y

)]
(27)

∂2ui

∂x∂y
= 1

Ai

mi∑

j=1

[
1

2
�LY (L)

i j

(
∂um

∂x
+ ∂u(L)

c

∂x

)

+1

2
�LY (R)

i j

(
∂um

∂x
+ ∂u(R)

c

∂x

)]
(28)
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Fig. 2 GSM weights for operator ∇ h in regular mesh: a rectangular
rule; b trapezoidal rule
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where

∇um = (∇ui + ∇u( j))/2 (29)

∇u(L)
c = (∇ui + ∇u( j) + ∇u( j+1))/3 (30)

∇u(R)
c =

{
(∇ui + ∇u( j) + ∇u( j−1))/3 j = 2, 3, . . . , mi

(∇ui + ∇u(1) + ∇u(mi ))/3 j = 1

(31)

3.2 Stability analysis of the GSM

To investigate the property of the aforementioned different
rules, an intensive numerical study is conducted from
the regular (structured) meshes. Based on the rectangular
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Fig. 3 GSM weights for ∇2 h2 in regular mesh: a rectangular rule;
b trapezoidal rule

and trapezoidal rules, several typical discrete differential
operators generated on regular meshes are presented in Figs. 2
and 3, where the grid interval is h in both x- and y-directions.
All of these only use the nodal values of the function, and
do not include their derivatives. As shown in Fig. 3, both the
rectangular and trapezoidal rules lead to wide stencils with
unfavourable weight distributions for the Laplace operator
∇2h2. It was demonstrated [38] that the stencils allow the
decoupling of the solution on quadrilateral grids.

The properties of both the rules can be improved, and
particularly the decoupling effect can be prevented by the
directional derivative along the edge i − j (see Fig. 1), i.e.,

(
∂u

∂l

)

i j
≈ u( j) − ui

li j
(32)

where li j represents the distance between the i th field node
and its j th surrounding node. Denote the vector from the
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Fig. 4 GSM weights for operator ∇2 h2 in regular mesh: a modified
rectangular rule; b modified trapezoidal rule
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Fig. 5 Regular element
distribution of Poisson’s
equation: a 50; b 200; c 882;
d 3,528 elements

Table 1 Comparison of error norms (eu) of Poisson’s equation with
Dirichlet boundary conditions for regularly distributed nodes computed
using different rules

No. of field nodes 36 121 484 1849

Rectangular rule 0.26729 6.2094E−2 1.3954E−2 3.5096E−3

Trapezoidal rule 0.26729 6.2094E−2 1.3954E−2 3.5096E−3

Rectangular 6.6548E−2 1.6491E−2 3.7322E−3 9.3269E−4

(modified)

Trapezoidal 5.2167E−2 1.2647E−2 2.8468E−3 7.1060E−4

(modified)

node i to its j th surrounding node as

�ri j = �r j − �ri (33)

With the definition of the unit vector �ti j along the line
connecting the node i and its j th surrounding node,

�ti j = �ri j

li j
(34)

Fig. 6 Comparison of error norms of Poisson’s equation with Dirichlet
boundary conditions for regularly distributed nodes computed using
different rules

the modified average gradient may be written as [39,40]

∇ui j = ∇�ui j −
[
∇�ui j · �ti j −

(
∂u

∂l

)

i j

]
�ti j (35)
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where ∇�ui j is given by

∇�ui j = 1

2
(∇�ui + ∇�u( j)) (36)

The modification leads to strongly coupled stencils on
quadrilateral as well as on triangular grids [38].

The above modified average gradient in Eq. (35) uses the
directional derivative along the edge connecting the node
i and its j th surrounding node, which is applicable to both
the rectangular and trapezoidal rules described in Sects. 3.1.1
and 3.1.1. A modified rectangular rule is obtained after incor-
porating this technique into the former rectangular rule. As
for the trapezoidal rule, both the modified average gradient
along the cell edge and the cell-based gradient by applying
Green–Gauss theorem are adopted to generate the modified
trapezoidal rule. Namely, function values at the centroids of
surrounding cells for the node i are obtained with arithme-
tic averaging of values at vertices of the surrounding cells,
and relevant gradients are approximated by applying Green-
Gauss theorem on the cell-based gradient smoothing domain.
This modified trapezoidal rule is the presently proposed novel
gradient smoothing method (GSM) for all the investigations
in this paper.

Using the modified rectangular and trapezoidal rules, the
typical Laplace operator ∇2h2 based on structured grids can
be obtained and shown as in Fig. 4. Applied to the regu-
lar grids, the modification to the rectangular rule is nothing
but central-differencing for midpoints of the grids. That is,
the modified rectangular rule has the property of consistency
with the classic finite difference. As shown in Fig. 4b, the
modified trapezoidal rule (GSM) generates a stencil with a
favourable weight distribution for the Laplace operator ∇2h2.
Thus, the GSM is consistent to the partial differential equa-
tions, which will guarantee the stability of the solution.

3.3 Convergence study of the GSM

In this study, the proposed GSM is first examined through
solving a two-dimensional Poisson’s equation as

∂2u

∂x2 + ∂2u

∂y2 = sin (πx) sin (πy) (37)

with problem domain � = {(x, y) ∈ [0, 1; 0, 1]}. The cor-
responding exact solution is

u(x, y) = − 1

2π2 sin (πx) sin (πy) (38)

Dirichlet and Neumann boundary conditions are conside-
red for regularly and irregularly distributed nodes, respecti-
vely. In the numerical studies, a norm as an error indicator is

defined as

eu =
√√√√

∑(
unumerical − uexact

)2

∑(
uexact

)2 (39)

Table 2 Relative errors of Poisson’s equation with Dirichlet boundary
conditions computed using the same sets of regularly distributed nodes
for GSM and FEM

No. of field 36 121 484 1849
nodes

h 0.2 0.1 0.0476 0.0238

eu

GSM 5.2167E−2 1.2647E−2 2.8468E−3 7.1060E−4

FEM 4.6600E−2 1.1600E−2 2.6000E−3 6.5940E−4

e∂u/∂x

GSM 0.20343 7.7494E−2 2.3482E−2 8.4210E−3

FEM 0.22220 8.1900E−2 2.4400E−2 8.6000E−3

Fig. 7 Comparison of convergence rate and accuracy between GSM
and FEM for Poisson’s equation with regular nodes: a Error norm eu ;
b Error norm e∂u/∂x
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Fig. 8 Irregular element
distribution of Poisson’s
equation: a 58; b 222; c 894;
d 3,632 elements

Table 3 Comparison of error norms (eu) of Poisson’s equation with
Neumann boundary conditions for irregularly distributed nodes com-
puted using different rules

No. of field nodes 40 132 488 1897

Rectangular rule 0.28030 6.5462E−2 1.5997E−2 3.9955E−3

Trapezoidal rule 0.27425 6.5180E−2 1.5665E−2 3.8869E−3

Rectangular 8.2456E−2 1.5604E−2 3.0192E−3 6.2920E−4

(modified)

Trapezoidal 6.7903E−2 1.3605E−2 2.7761E−3 6.0463E−4

(modified)

Similarly, the error norm for the first-order derivative is

e∂u/∂x =

√√√√√√

∑[(
∂u
∂x

)numerical − (
∂u
∂x

)exact
]2

∑[(
∂u
∂x

)exact
]2 (40)

We start with the four regular distributions of 6 × 6, 11 ×
11, 22 × 22 and 43 × 43 field nodes, as shown in Fig. 5.
A Dirichlet boundary is considered, in which the essential

Fig. 9 Comparison of error norms of Poisson’s equation with
Neumann boundary conditions for irregularly distributed nodes
computed using different rules

boundary conditions are imposed on all edges as

u = 0 along x = 0, x = 1, y = 0 and y = 1 (41)
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The overall error norms of the field variable u for the various
rules discussed in Sects. 3.1 and 3.2 are shown in Table 1 and
Fig. 6. Compared with the other rules, the GSM (modified
trapezoidal rule) achieves the best linear steady convergence.
The relative errors in u and ∂u

∂x of GSM are compared with
three-node linear finite elements in Table 2 and Fig. 7. The
convergence rates are also demonstrated in Fig. 7, where h
is the averaged element size. As shown in Fig. 7a, the GSM
achieves a little higher convergence rate for field variable u
compared with the linear FEM. As for the first-order deriva-
tive ∂u

∂x in Fig. 7b, the GSM is more accurate than FEM.
Further, the four distributions of irregular field nodes pre-

sented in Fig. 8 are investigated. They are 40, 132, 488 and
1,897 nodes, respectively. The mixed boundary conditions
are considered here in problem domain �, where Neumann
boundary conditions are

∂u

∂x

∣∣∣∣
x=0

= − 1

2π
sin(πy),

∂u

∂x

∣∣∣∣
x=1

= 1

2π
sin(πy) (42)

and Dirichlet boundary conditions are

u = 0 along y = 0 and y = 1 (43)

The overall error norm of field variable u using the GSM
has been much improved from 6.79 to 0.06%, as shown in
Table 3 and Fig. 9. The relative errors in u and ∂u

∂x for GSM
and FEM are presented in Table 4 and Fig. 10. As shown in
Fig. 10a, the GSM not only achieves a higher convergence
rate but also obtains more accurate results than FEM. With
the increase of irregular nodes, it appears that GSM are more
and more accurate than FEM. Similarly, it can be seen from
Fig. 10b that the GSM is more accurate than FEM in the
computation of the first-order derivatives of variable u. This
is because the GSM directly discretizes the governing equa-
tions based on the gradient smoothing technique which gua-
rantees the first-order continuity. However, in terms of the
first-order derivatives (e.g., stresses and strains), the FEM
suffers from discontinuity problems and requires the use of
post processing to produce better results.

Table 4 Relative errors of Poisson’s equation with Neumann boundary
conditions computed using the same sets of irregularly distributed nodes
for GSM and FEM

No. of field 40 132 488 1897
nodes

h 0.1878 0.09534 0.04741 0.02350

eu

GSM 6.7903E−2 1.3605E−2 2.7761E−3 6.0463E−4

FEM 6.7900E−2 1.4800E−2 3.3000E−3 7.7356E−4

e∂u/∂x

GSM 0.15545 5.3777E−2 1.9578E−2 6.8747E−3

FEM 0.1881 6.4200E−2 2.1700E−2 7.2000E−3

Fig. 10 Comparison of convergence rate and accuracy between GSM
and FEM for Poisson’s equation with irregular nodes: a Error norm eu ;
b Error norm e∂u/∂x

Fig. 11 Cantilever beam subjected to a parabolic load at the free end

It can be observed from this numerical study that the GSM
is quite stable even with the Neumann boundary conditions
and yields very accurate results for both the regular and irre-
gular field node distributions.
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Fig. 12 Domain discretization
of cantilever beam: a node
distribution; b element
distribution

Fig. 13 Deflection of cantilever beam along the line y = 0 computed
using the same mesh (480 triangular elements) for GSM and FEM

4 Numerical examples

4.1 Cantilever beam

A 2-D cantilever beam with length L and height D sub-
jected to a parabolic traction at the free end is studied as a
benchmark problem here, as shown in Fig. 11. Assume the
beam has a unit thickness so that the problem is simplified
into plane stress case. The analytical solution is available by
Timoshenko and Goodier [41]:

Fig. 14 Normal stress σxx along the line x = L/2 computed using the
same mesh (480 triangular elements) for GSM and FEM

ux = − Py

6E I

[
(6L − 3x)x+(2 + ν)

(
y2− D2

4

)]
(44)

uy = P

6E I

[
3νy2(L−x)+(4 + 5ν)

D2x

4
+ (3L − x)x2

]

(45)

σxx = − P(L − x)y

I
(46)

σyy = 0 (47)
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Fig. 15 Shear stress τxy along the line x = L/2 computed using the
same mesh (480 triangular elements) for GSM and FEM

Fig. 16 Quarter model of the infinite plate with a circular hole subjec-
ted to a unidirectional tensile load

Table 5 Comparison of the CPU time computed using GSM and FEM

No. of field nodes CPU time of GSM (s) CPU time of FEM (s)

273 0.73 1.67

527 1.83 3.14

1127 5.67 6.53

2275 26.78 16.34

3825 84.76 44.25

τxy = P

2I

(
D2

4
− y2

)
(48)

where the moment of inertia I for a beam with rectangular
cross section and unit thickness is given by I = D3

/
12. The

geometries and material properties are taken as L = 48m,
D = 12 m, Young’s modulus E = 3 × 107 N/m2, Poisson’s
ratio ν = 0.3, loading (integration of the distributed traction)
P = −1000 N. The governing equations of this problem are
given by Eqs. (1)–(3), which are also used for the following
numerical investigations.

In this study, cantilever beam is simulated by 273 regularly
distributed nodes and 480 triangular elements as shown in
Fig. 12a and b. To validate the present method, the GSM
results are compared with the FEM and analytical solutions,
respectively. The same set of nodes and elements are used
for modeling of cantilever beam by the GSM and FEM. In
the FEM, three-node linear element and 3 gauss integration
points are used in the numerical integration scheme.

The computing results of the deflection along the line
y = 0 are plotted in Fig. 13. From this figure, it is obser-
ved that the GSM is able to provide the results as accurate
as the FEM for deflection of the cantilever beam as shown in
Fig. 13. In terms of stresses, the FEM requires post processing
procedures to provide better results as it suffers from discon-
tinuity in stresses. In contrast, the GSM does not encounter
discontinuity problem in stresses. As shown in Fig. 14, the
normal stress σxx computed by the GSM is smooth rather

Fig. 17 Quarter model of the
infinite plate: a node
distribution; b element
distribution
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Fig. 18 Normal stress σxx along the edge of x = 0 in a plate with a
central hole subjected to a unidirectional tensile load

Fig. 19 A bridge pier subjected to a uniformly distributed pressure on
the top

than discontinue like the FEM. Also, the shear stress τxy

plotted in Fig. 15 is more accurate than that of FEM. From
this point of view, the GSM does perform better than the
FEM for computing the stresses.

Table 5 shows the comparison of the computational effi-
ciency between GSM and FEM using the same set of meshes
of 273, 527, 1,127, 2,275 and 3,825 regularly distributed
nodes. It is found that GSM uses less CPU time than FEM
when a small number of nodes are used. This is because
of that when node number is small the CPU time is largely
controlled by the overhead operations in creating the alge-
braic system equations. As GSM creates the system equa-
tions by discretizing directly (by collocation) the governing
equation and does not need any integration that is on the other
hand necessary for FEM, the GSM is therefore more efficient
than FEM when a small number of nodes are used. This is
clearly demonstrated in Table 5. When a large number of
nodes are used, however, the CPU time is mainly determined
by solving the algebraic system equations. In this case FEM
is faster than GSM, but is only about twice faster. This can be
examined simply by the complicity analysis of the equation
solvers used in the FEM and GSM. We know that the band-
width of the system matrix generated by GSM is the same
as the FEM, but the matrix in GSM is not symmetric and
a solver for asymmetric system equations needs to be used.
In the FEM, however, the matrix is symmetric and hence
a solver for symmetric system equations can be used. The
complexity of a symmetric solver is about twice faster than
an asymmetric solver for matrices of the same dimension and
bandwidth. This analysis is confirmed numerically as shown
in Table 5.

Our conclusion is: (1) for small systems, GSM is more
efficient than FEM, and gives more accurate results in terms
of stresses; (2) for large systems, FEM is about twice as faster
as GSM, but GSM gives more accurate results in terms of
stresses.

Fig. 20 Half model of the
bridge pier: a node distribution;
b element distribution
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Fig. 21 Displacement in y-direction along the line x = 0 (GSM uses
1,077 triangular elements while ANSYS adopts a very fine triangular
mesh to get the reference solution)

Fig. 22 Displacement in y-direction along the line y = 30 (GSM uses
1,077 triangular elements while ANSYS adopts a very fine triangular
mesh to get the reference solution)

4.2 Infinite plate with a circular hole

To validate the GSM in simulating stress concentration, we
consider an infinite plate with a central circular hole subjected
to a unidirectional tensile load p = 1.0 in the x-direction.
Due to the symmetry, only the upper right quadrant of the
plate is modelled, as shown in Fig. 16, in which the plane
strain problem is considered, and the geometries and mate-
rial parameters used are a = 1, b = 5, Young’s modulus
E = 1.0 × 103 and Poisson’s ratio ν = 0.3. Symmetry
conditions are imposed on the left and bottom edges, and the
inner boundary of the hole is traction free. The correspon-
ding exact solutions for the stresses in the plate are given in

Fig. 23 Displacement in y-direction along the line y = 15 (GSM uses
1,077 triangular elements while ANSYS adopts a very fine triangular
mesh to get the reference solution)

Fig. 24 Normal stress σyy along the line y = 15 (GSM uses 1,077
triangular elements while ANSYS adopts a very fine triangular mesh to
get the reference solution)

the polar coordinate [41]:

σxx = 1 − a2

r2

(
3

2
cos 2θ + cos 4θ

)
+ 3

2

a4

r4 cos 4θ (49)

σxy = −a2

r2

(
1

2
sin 2θ + sin 4θ

)
+ 3

2

a4

r4 sin 4θ (50)

σyy = −a2

r2

(
1

2
cos 2θ − cos 4θ

)
− 3

2

a4

r4 cos 4θ (51)

where (r, θ) are the polar coordinates and θ is measured coun-
terclockwise from the positive x-axis. The traction boundary
conditions given by the exact solutions (49)–(51) are impo-
sed on the right (x = 5) and top (y = 5) edges.
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Fig. 25 An automotive part:
the connecting rod

Fig. 26 Half model of the
connecting rod: a node
distribution; b element
distribution

Figure 17a shows the distribution of 261 irregular nodes
in the problem domain, in which there are 465 triangular
elements (see Fig. 17b). The distribution of normal stress
σxx along the line x = 0 obtained using the GSM is shown
in Fig. 18. It can be observed from this figure that the GSM
yields very satisfactory results for the stress concentration
problem.

4.3 Bridge pier

In this example, the GSM is used for the stress analysis of
a bridge pier subjected to a uniformly distributed pressure
on the top, as shown in Fig. 19. The problem is solved as a
plain strain case with material properties E = 4 × 1010 Pa,
υ = 0.15 and loading P = 105 Pa.

Due to the symmetry, only right half of the bridge is model-
led as shown in Fig. 20 where there are 590 field nodes
(see Fig. 20a) in the model and 1,077 triangular elements

(see Fig. 20b). As there are no analytical solutions available
for this problem, a reference solution of displacements and
stresses are computed with commercial software ANSYS
using very fine triangular mesh for purpose of validation.

The displacements in y-direction along the lines x = 0,

y = 30 and y = 15 are plotted in Figs. 21, 22 and 23, respec-
tively. The solutions obtained by GSM are in good agreement
with the reference (ANSYS) solutions. Also, comparison of
the stress distribution σyy along the line y = 15 computed by
the GSM and ANSYS is shown in Fig. 24. It can be conclu-
ded from the figure that the GSM results are accurate enough
for general engineering requirement.

4.4 An automotive part: connecting rod

As the last numerical example, to generalize the present
GSM to all problem domains with irregular shapes, a connec-
ting rod as an automotive part with complicated geometry is

123



Comput Mech (2008) 41:457–472 471

Fig. 27 Displacement in X -direction along the line y = 0 (GSM uses
2,877 triangular elements while ANSYS adopts a very fine triangular
mesh to get the reference solution)

studied as a plane stress solid mechanics problem, as shown
in Fig. 25a. The material properties are given as Young’s
modulus E = 3 × 107 Pa and Poisson’s ratio υ = 0.3. The
edge of the hole 1 is fixed and the right edge of the hole 2 is
subjected to a constant pressure P = 200 Pa (see Fig. 25b).
Due to symmetry, only upper half of the connecting rod is
simulated and shown in Fig. 25b. Symmetric conditions are
imposed along the bottom edge of the half connecting rod.

Figure 26a shows the node distribution of 1,634 irregular
field nodes, in which there are 2,877 triangular elements in
the problem domain, as shown in Fig. 26b. Since no analyti-
cal solution is available for this problem, commercial FEM
software, ANSYS, is also used to compute the reference solu-
tions with a very fine mesh of triangular elements for purpose
of comparison.

Figure 27 shows the displacement in x-direction along the
line y = 0. The stress distributions σxx and σyy along the line
y = 0 by GSM are plotted in Fig. 28a and b. It can be found
that the GSM results are very accurate compared with the
ANSYS reference solutions.

5 Conclusions

In this paper, a gradient smoothing method (GSM) has been
presented for solving partial differential equations, with
emphases on solid mechanics problems. By adopting the
gradient smoothing together with the directional derivative
correction, the first- and second-order derivative approxima-
tions can be obtained with a favourable weight distribution
for a set of field nodes surrounding the interest node. Unlike
the traditional finite difference method with structured and
orthogonal grids or the generalized finite difference methods

Fig. 28 Distribution of normal stresses along the line y = 0: a σxx ;
b σyy (GSM uses 2,877 triangular elements while ANSYS adopts a very
fine triangular mesh to get the reference solution)

with some topological requirements, the GSM is flexible to
perform the use of pre-existing meshes which are originally
created for finite element or finite difference methods, regard-
less of their topology. The selected star of the GSM is simply
generated by sequentially connecting the centroids with mid-
edge points of surrounding elements for the interested node,
compared with the Voronoi neighborhood criterion. Since the
GSM directly discretizes the governing equations using the
gradient smoothing technique, the first-order continuity can
be obtained which leads to the better results in the compu-
tations of stresses and strains for solid mechanics problems
compared with the finite element method. By comparison
with FEM (ANSYS) or analytical solution via several nume-
rical examples, it can be concluded that the proposed method
achieves very accurate and stable solutions using arbitrary
and irregular computational meshes.

Compared with the FEM, GSM is more efficient than
FEM, and gives more accurate results in terms of stresses
when a small number of nodes are used. For large systems,
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FEM is about twice as faster as GSM, but GSM give more
accurate results in terms of stresses.

The method can be easily applied to adaptive analysis and
three-dimensional problems.
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